Global convergence of elastic mode approaches for a class of MPCC

Mihai Anitescu Argonne National Laboratory

Context and goals

- Recently, there have been several approaches to solve Mathematical Programs with Complementarity Constraints (MPCC) by using nonlinear programming techniques (General: Anitescu 2000, Fletcher and al 2002;, Structured smoothing: Fukushima and Pang 1998, Scholtes 2002).
- However all of them are of the local type: If point is **sufficiently close** to a strongly stationary point that satisfies **some condition** then algorithm converges to that point.
- Global convergence: If algorithm is applied to a **problem class** then any accumulation point is a ? **stationary point**. If the point satisfies **some condition** then it is a ?++ **stationary point**.
- However, we need to restrict the problem class to get some significant results.

Before anything else: The mixed P property

Let $A \in R^{(n_c+l)\times n_c}$, $B \in R^{(n_c+l)\times n_c}$, and $C \in R^{(n_c+l)\times l}$. [A B C] is mixed P partition if

$$0 \neq (y, w, z) \in R^{2n_c + l},$$

$$Ay + Bw + Cz = 0$$

$$\Rightarrow \exists i, 1 \leq i \leq n_c, \text{ such that } y_i w_i > 0.$$

What is actually **needed** in this work (and is implied if [A B C] is a mixed P partition), is

$$A^T \theta \leq 0, B^T \theta \leq 0, C^T \theta = 0 \Rightarrow \theta = 0$$

Optimization of mixed P variational inequalities

$$(OMPV) \qquad \qquad (OMPV(c)) \\ \underset{x,y,w,z}{\min} \quad f(x,y,w,z) \qquad \underset{x,y,w,z,\zeta_{1},\zeta_{2}}{\min} \quad f(x,y,w,z) + \quad c(\zeta_{1} + \zeta_{2}) \\ \text{sbj.to} \quad g(x) \qquad \leq 0 \\ h(x) \qquad = 0 \\ F(x,y,w,z) \qquad = 0 \\ y,w \qquad \leq 0 \\ y^{T}w \qquad \leq 0 \\ \zeta_{1},\zeta_{2} \qquad \geq 0 \\ \end{cases}$$

We name the problem **OMPV** because of the **mixed P VI**:

$$F(x, y, w, z) = 0 \ y, w \le 0 \ y^T w \le 0$$

MPEC stationarity concepts

$$\nabla_{x} f(x, y, w, z)^{T} + \nabla_{x} h(x)^{T} \lambda + \\ \nabla_{x} g(x)^{T} \mu + \nabla_{x} F(x, y, w, z)^{T} \theta = 0$$

$$\nabla_{y} f(x, y, w, z)^{T} + \widehat{\eta}_{y} + \nabla_{y} F(x, y, w, z)^{T} \theta = 0$$

$$\nabla_{w} f(x, y, w, z)^{T} + \widehat{\eta}_{w} + \nabla_{w} F(x, y, w, z)^{T} \theta = 0$$

$$\nabla_{z} f(x, y, w, z)^{T} + \nabla_{z} F(x, y, w, z)^{T} \theta = 0$$

$$g(x) \leq 0, \mu \geq 0, h(x) = 0, g(x)^{T} \mu = 0$$

$$F(x, y, z, w) = 0, y \leq 0, w \leq 0, y^{T} w = 0,$$

$$\sum_{k=1}^{n_{c}} y_{k} |\widehat{\eta}_{y,k}| = 0, \sum_{k=1}^{n_{c}} w_{k} |\widehat{\eta}_{w,k}| = 0$$

MPEC stationarity concepts

- Weakly stationary points: no additional requirements.
- C-stationary points: $\widehat{\eta}_{y,k}\widehat{\eta}_{w,k} \geq 0, \ k=1,2,\ldots,n_c$:
- M-stationary points: C-stationary points and $\widehat{\eta}_{y,k} \geq 0$ or $\widehat{\eta}_{w,k} \geq 0, \ k = 1, 2, \dots, n_c$
- B-stationary points, for which d = 0 is a solution of the linearized (OMPV) **except** $y^T w \leq 0$
- Strongly stationary points,

$$y_k = 0$$
, $w_k = 0 \Rightarrow \widehat{\eta}_{y,k} \ge 0$ and $\widehat{\eta}_{w,k} \ge 0$, $k = 1, 2, \dots, n_c$

Sheel and Scholtes 2000 describe in detail the connections.

Important concepts about MPCC and OMPV

• **Definition (ULSC)**. A weakly stationary point (x, y, z, w) of (OMPV) satisfies the upper level strict complementarity (ULSC) property if there exists an MPCC multiplier that satisfies

$$y_k + w_k = 0 \Rightarrow \widehat{\eta}_{y,k} \widehat{\eta}_{w,k} \neq 0, \ k = 1, 2, \dots, n_c.$$

• **Definition (MPCC-LICQ)** MPCC-LICQ holds at a feasible (x, y, z, w), point of (OMPV) if the gradients of all active constraints of (OMPV) at (x, y, z, w), with the exception of the complementary constraint $y^T w \leq 0$, are linearly independent.

Note (Sheel and Scholtes 2000) Under MPCC-LICQ, all stationarity concepts are the same at a solution point of (OMPV).

Assumptions

A1 The mappings f, g, h, F are twice continuously differentiable.

A2 The constraints involving only the parameters x satisfy, for any x,

- i) $\nabla_x h(x)$ has full column rank.
- ii) $\exists p \in \mathbb{R}^n$ such that $\nabla_x h(x)p = 0$ and $\nabla g_i(x)p < 0$ whenever $g_i(x) \geq 0$.
- iii) The linearization $h(x) + \nabla_x h(x) d = 0$, $g(x) + \nabla_x g(x) d \leq 0$ is feasible.
- **A3** The partition $[\nabla_y F, \nabla_w F, \nabla_z F]$ is a mixed P partition (3).

Assumptions about the algorithm

Definition (Global Convergence Safeguard). A nonlinear programming algorithm (such as **FilterSQP**) whose outcome is

- 1. An infeasible point of the nonlinear program at which the linearization of the constraints is infeasible.
- 2. A feasible point of the nonlinear program that does not satisfy MFCQ.
- 3. A feasible point of the nonlinear program that satisfies MFCQ and that is a KKT point of the nonlinear program.
- **Alg1** The nonlinear programming algorithm has a global convergence safeguard.

Then any accumulation point of a nonlinear programming algorithm that satisfies Assumption **Alg1** and is applied to (OMPV(c)) is a KKT point!

ε stationary point, dual conditions

 $(x, y, w, z, \zeta_1, \zeta_2)$ is an ε stationary point of (OMPV(c)) if there exists $(\lambda, \mu, \theta, \eta_y, \eta_w, \alpha_c, \alpha_1, \alpha_2)$ such that:

$$\begin{cases}
\nabla_{x} f(x, y, w, z)^{T} + \nabla_{x} h(x)^{T} \lambda + \\
\nabla_{x} g(x)^{T} \mu + \nabla_{x} F(x, y, w, z)^{T} (\theta^{+} - \theta^{-}) &= t_{x} \\
\nabla_{y} f(x, y, w, z)^{T} + \eta_{y} + \alpha_{c} w + \nabla_{y} F(x, y, w, z)^{T} (\theta^{+} - \theta^{-}) &= t_{y} \\
\nabla_{w} f(x, y, w, z)^{T} + \eta_{w} + \alpha_{c} y + \nabla_{w} F(x, y, w, z)^{T} (\theta^{+} - \theta^{-}) &= t_{w} \\
\nabla_{z} f(x, y, w, z)^{T} + \nabla_{z} F(x, y, w, z)^{T} (\theta^{+} - \theta^{-}) &= t_{z} \\
\|\theta^{+}\|_{1} + \|\theta^{-}\|_{1} + \alpha_{1} = c + t_{\alpha 1}; \ \alpha_{c} + \alpha_{2} = c + t_{\alpha 2} \\
\mu \geq \mathbf{0}; \ \eta_{\mathbf{y}}, \eta_{\mathbf{w}} \geq \mathbf{0}; \theta^{+}, \theta^{-} \geq \mathbf{0}; \ \alpha_{\mathbf{c}}, \alpha_{\mathbf{1}}, \alpha_{\mathbf{2}} \geq \mathbf{0}, \\
\|t_{x}, t_{y}, t_{w}, t_{z}, t_{\alpha 1} t_{\alpha 2}\|_{\infty} \leq \varepsilon.
\end{cases}$$

ε stationary point, primal and compl. conditions

$$\begin{cases} g(x) & \leq t_g \\ h(x) & = t_h \\ -\zeta_1 e_{n_c+l} - t_{1F} & \leq F(x, y, w, z) \leq \zeta_1 e_{n_c+l} + t_{2F} \\ \mathbf{y}, \mathbf{w} & \leq \mathbf{0} \\ y^T w & \leq \zeta_2 + t_c \\ \zeta_1, \zeta_2 & \geq \mathbf{0}, \end{cases}$$

$$\begin{cases} (\zeta_{1}e_{n_{c}+l} - F)^{T}\theta^{+} + (F + \zeta_{1}e_{n_{c}+l})^{T}\theta^{-} = t_{c}F \\ \alpha_{c}(\zeta_{2} - w^{T}y) = t_{cc}; \ g(x)^{T}\mu = t_{cg}; \\ |\alpha_{2}\zeta_{2}| \leq t_{cp}; \ |\alpha_{1}\zeta_{1}| \leq t_{cp}; \ |y^{T}\eta_{y}| \leq t_{cp}; \ |w^{T}\eta_{w}| \leq t_{cp}, \\ |t_{g}, t_{h}, t_{1F}, t_{2F}, t_{c}, t_{cc}, t_{cF}, t_{cg}, t_{cp}|_{\infty} \leq \varepsilon. \end{cases}$$

... piece of cake for interior-point methods

The algorithm

Choose $c_0 > 0$, n = 0, K > 1, an integer $q \ge 1$ and a sequence $\varepsilon^n \to 0$.

MPCC Find an ε^n solution $(x^n, y^n, w^n, z^n, \zeta_1^n, \zeta_2^n)$ of $(OMPV(c^n))$.

If $\zeta_1^{c^n} + \zeta_2^{c^n} > (\varepsilon^n)^{\frac{1}{q}}$,

update $c: c^{n+1} = Kc^n$ and n: n = n + 1.

return to **MPCC**

Note that, as opposed to Scholtes 2002, we do not need an infinite number of steps to solve the subproblem.

Global Convergence Theorem

Assume that

- (OMPV) satisfies the assumptions **A1**, **A2** and **A3**.
- (OMPV(c^n)) is solved with an NLP algorithm that satisfies Assumption **Alg1** that produces an ε^n stationary point.
- $\lim_{n\to\infty} c^n \varepsilon^n = 0$.
- The sequence $(x^{c^n}, y^{c^n}, w^{c^n}, z^{c^n}, \zeta_1^{c^n}, \zeta_2^{c^n})$ has an accumulation point.

Then (1) if the penalty parameter update rule is activated a finite number of times any accumulation point is a strongly stationary point of (OMPV) and (2) if the penalty parameter update rule is activated an **infinite** number of times, and then any accumulation point is a **C-stationary** point of (OMPV).

Note that we may still diverge to ∞ ... but we'll fix that.

Approximate second-order stationary points

Definition (ϵ , χ second-order stationary point). We say that the point $\tilde{x} = (x, y, z, w, \zeta_1, \zeta_2)$, together with a Lagrange multiplier $\tilde{\lambda} = (\lambda, \mu, \theta^{+n}, \theta^{-n}, \eta_y, \eta_w, \alpha_c, \alpha_1, \alpha_2)$ is an ε, χ second-order point of (OMPV(c)) if

- 1. $\tilde{x} = (x, y, z, w, \zeta_1, \zeta_2)$, is an ε stationary point of (OMPV(c)), that satisfies exactly the primal-dual complementarity involving the slack variables $\eta_{y,k}^T y = 0$, $\eta_{w,k}^T w = 0$.
- 2. $u^T \Lambda_{xx}^c(\tilde{x}, \tilde{\lambda}) u > 0$ for any u that is at the same time in the null space of the gradients of the active bound constraints of (OMPV(c)) and null space of a subset of the χ -active non-bound constraints of (OMPV(c)).

Note that sufficient conditions can be tested by by active set methods with rank-revealing factorization.

M-stationarity Result

Assume that

- The problem (OMPV) satisfies assumptions **A1**, **A2** and **A3**
- $(OMPV(c^n))$ is solved with an algorithm that satisfies Assumption Alg1.
- $\tilde{x}^n = (x^n, y^n, z^n, w^n, \zeta_1^n, \zeta_2^n)$ is a ε^n, χ^n second-order stationary point of $(OMPV(c^n))$, for all $n = 1, 2, ..., \infty$
- $\lim_{n\to\infty} c^n = \infty$, $\lim_{n\to\infty} \varepsilon^n = 0$, $\lim_{n\to\infty} \chi^n = 0$ and $\lim_{n\to\infty} c^n \varepsilon^n = 0$.
- $(x^*, y^*, z^*, w^*, \zeta_1^*, \zeta_2^*)$ is an accumulation point of this sequence.
- If (x^*, y^*, z^*, w^*) satisfies MPCC-LICQ,

then (x^*, y^*, z^*, w^*) must be an M-stationary point of (OMPV).

Convergence to strongly stationary points

If, in addition to the assumptions of M-stationarity convergence we have that ULSC holds at the accumulation point (x^*, y^*, z^*, w^*) , then (x^*, y^*, z^*, w^*) is a **strongly stationary** point and, as a result, a **strongly stationary** point.

The result is similar to the results of Fukushima and Pang 98 and Scholtes 2002, except that it works with approximate points. Sven's objection However, if ULSC does not hold a descent direction may still exist.

Is M-stationarity sufficient?

Assume that (x^*, y^*, z^*, w^*) is an M-stationary point of (OMPV). Then, for any $\delta > 0$, the following exist

- 1. A perturbation $f^{\delta}(x, y, w, z)$ of the objective function f(x, y, w, z) that satisfies $\|\nabla_{\tilde{x}} f^{\delta}(x, y, w, z) \nabla_{\tilde{x}} f(x, y, z, w)\| \leq \delta$ for all $\tilde{x} = (x, y, z, w)$ in a neighborhood of (x^*, y^*, z^*, w^*) .
- 2. A vector l_F^{δ} that satisfies $||l_F^{\delta}|| \leq \delta$.
- 3. A point $(x^{\delta}, y^{\delta}, z^{\delta}, w^{\delta})$ that satisfies $\|(x^{\delta}, y^{\delta}, z^{\delta}, w^{\delta}) (x^*, y^*, z^*, w^*)\| \le \delta$ and that is a **strongly stationary point (thus a B-stationary point)** for the perturbed problem

The perturbed problem

$$\min_{x,y,w,z} \quad f^{\delta}(x,y,w,z)$$

$$\text{sbj.to} \quad g(x) \qquad \leq 0$$

$$(\delta OMPV) \qquad \qquad h(x) \qquad = 0$$

$$F(x,y,w,z) \qquad = l_F^{\delta}$$

$$y,w \qquad \leq 0$$

$$(y^Tw=0) \quad y^Tw \quad \leq 0$$

M-stationary points my be indistinguishable in finite arithmetic or for finite tolerance from strongly-stationary points!

Finishing global convergence: keep iterates finite

- **A4** The penalty function $\psi(x, y, w, z) = ||F(x, y, w, z)||_{\infty} + y^T w$ has bounded level sets over the set defined by the constraints $g(x) \leq 0, \ h(x) = 0, \ y \leq 0, \ w \leq 0.$
- **A5** The objective function f(x, y, w, z) is bounded below over the same set.
- **Alg2** For any fixed value of c, the algorithm that is applied for solving the problem (OMPV(c)) decreases the merit function $f(x, y, z, w) + c\psi(x, y, z, w)$.

The merit function

 $\Psi(x, y, w, z, c) = \frac{1}{c} (f(x, y, w, z) - B_f) + \psi(x, y, w, z)$ is always decreasing (even at penalty update) and has bounded level sets \Rightarrow convergence to C-stationary points is guaranteed!

The obstacle problem

$$\min_{x,y,w,z} f(x,z)$$

$$\text{sbj.to} g(x) \leq 0$$

$$-A(x)z + \phi(x) = y$$

$$k(\phi(x) - A(x)z) + \chi(x) - z = w$$

$$y, w \leq 0$$

$$(y^T w = 0) y^T w \leq 0$$

We proved that the obstacle problem satisfies assumptions A1, A2, A3, A4!!! So not so outlandish after all.

The obstacle problem test set (THANKS SVEN!!)

All of them satisfy Assumption A5

- The incidence set identification problem The contact region must be as close as possible to a prescribed shape.
- The packaging problem with compliant obstacle. Minimize the area of the membrane, while keeping the membrane in contact with the obstacle over at least a prescribed region.
- The packaging problem with rigid obstacle. Same as before but the obstacle is rigid.

Algorithmic choices for our numerical simulations

- 1. We use knitro to solve OMPV(c), the relaxed problem. knitro was not proven to satisfy **Alg1**, but we can test for ϵ stationarity and knitro provided one for any problem.
- 2. $q = 2, K = 10, c_0 = 10, \text{ and } \epsilon^n = 10^{-3}12^{-n}$. We put ϵ^n =opttol=feastol.
- 3. Stopping Criteria $\zeta_1^n + \zeta_2^n \le 1e 7$.
- 4. Note that $c^n \leq 10^{n+1}$, means that $c^n \epsilon^n \to 0$, as required by our results!!

Detecting C-stationarity and M-stationarity

• We construct what we hope are good MPEC multipliers:

$$\widehat{\eta}_{w,k} = \eta_{w,k} + cy_k, \quad \widehat{\eta}_{y,k} = \eta_{y,k} + cw_k, \quad k = 1, 2, \dots, n_C.$$

• We define

$$\operatorname{Cstat} = \min_{k=1,2,\dots,n_C} \widehat{\eta}_{w,k} \widehat{\eta}_{y,k}, \quad \operatorname{Mstat} = \max_{k=1,2,\dots,n_C} \min\{\widehat{\eta}_{w,k}, \widehat{\eta}_{y,k}\}.$$

• If Cstat ≥ 0 we go to a C-stationary point; if $Mstat \leq 0$, we have also an M-stationary point (Note that the MacMPEC library uses nonnegativity constraints, as opposed to nonpositivity as used here).

${f (Numerical\ Results)}$

Problem	Obj	Uc	Ut	Cstat	Mstat	Feval	KFeval
is-1-8	2.352e-08	0	5	4.10e-11	2.89e-09	204	390
is-1-16	8.639e-06	1	6	9.38e-08	7.85e-06	451	4001
is-1-32	5.904e-06	2	7	3.36e-08	5.52e-05	2906	1097
is-2-8	4.517e-03	1	6	5.12e-08	2.84 e-07	302	1712
is-2-16	3.006e-03	1	6	1.27e-06	1.02e-03	434	4001
is-2-32	1.774e-03	2	5	1.01e-05	3.54e-03	2083	4001
pc-1-8	6.000e-01	1	5	6.32e-14	1.40e-03	75	4001
pc-1-16	6.169e-01	1	7	3.82e-21	5.65 e-07	297	4001
pc-1-32	6.529 e - 01	2	6	9.60e-18	8.93 e-05	4999	3081
pc-2-8	6.731e-01	1	5	1.01e-19	3.03e-06	78	1421
pc-2-16	7.271 e-01	2	5	3.60e-16	1.77e-03	289	1358
pc-2-32	7.826e-01	2	6	1.84e-16	1.22e-04	645	1350
pr-1-8	7.879e-01	1	6	9.28e-18	1.03e-06	193	81
pr-1-16	8.260e-01	2	5	1.68e-16	1.14e-05	218	54
pr-1-32	8.508e-01	2	5	1.95e-17	1.17e-03	644	3040
pr-2-8	7.804e-01	1	6	3.20e-18	1.46e-06	183	33
pr-2-16	1.085e+00	3	6	2.32e-15	1.73e-05	342	208
pr-2-32	1.135e+00	3	6	1.36e-14	1.59e-04	661	2792

Note C-stationarity always satisfied, M-stationarity almost true.

M-stationary points under finite tolerance

• The problem pr-1-32, for index k = 19 we have

$$y_{19} = 1.039e - 05$$
, $w_{19} = 1.42e - 04$, $\widehat{\eta}_{y,19} = 0.14$, $\widehat{\eta}_{w,19} = 1.17e - 03$

- In absence of any additional information (such as whether MPCC-LICQ holds, which cannot be tested for AMPL), it is difficult to decide whether the algorithm converges to an M-stationary point at which descent is still possible, or whether it converges to a strongly stationary point.
- However, if MPCC-LICQ holds, then one should somehow take advantage of **Sven's point**. But how to do that **before convergence**, is not clear.

The performance plot

Conclusions)

- We proved that an elastic mode approach are guaranteed to converge to C-stationary points of the optimization of mixed P variational inequalities. To my knowledge, the first that does not assume any other constraint qualification at the solution.
- We proved that several variants of the obstacle problem satisfy our convergence assumptions.
- We have shown that M-stationary points can be confounded with strongly stationary points in finite arithmetic. This does not mean that they will be but in some of our examples they were.
- We have shown that our elastic mode approach with knitro solving the relaxed problem is superior to knitro alone at solving the problem.

Still to do

- Can one robustly marry this approach with an active-set approach to take advantage of MPCC-LICQ (if it holds) sufficiently close to the solution?
- Can convergence to M-stationarity hold under weaker conditions? For example MPCC-MFCQ (see Jane Ye's talk from Sunday)?